"""
Support for creating profiles of various quantities, normally as a function of 2d or 3d radius.
The functions defined in the module represent profiles that can be access from a
:class:`~pynbody.analysis.profile.Profile` object.
For more information and example usage, see the :ref:`profile` tutorial and the documentation for the
:class:`~pynbody.analysis.profile.Profile` class.
"""
import logging
import math
import pickle
import warnings
from time import process_time
import numpy as np
import pynbody
from .. import array, units, util
logger = logging.getLogger('pynbody.analysis.profile')
[docs]
class Profile:
"""Generates profiles of specified quantities as a function of radius or other binning quantity.
Any quantity known in the SimSnap can be profiled, meaning that the mean value of that
quantity in each bin is calculated.
.. seealso::
For more information and example usage, see the :ref:`profile` tutorial.
To define profiles of new quantities, see :meth:`profile_property`.
**Implicit averaging**: If an array ``ar`` is defined in the underlying ``SimSnap``, then a profile of ``ar``
can be accessed as ``p['ar']`` where ``p`` is a ``Profile`` object. For example, ``p['vr']`` gives
the radial velocity profile. Implicitly, this is averaged over all particles in each bin,
weighted by mass (unless an alternate weighting scheme is passed to the ``weight_by`` keyword argument of the
constructor).
**Dispersions**: One may append ``_rms`` or ``_disp`` to the name of a
defined array to get the root-mean-square or dispersion profile, respectively. For example,
``p['vr_rms']`` gives the root-mean-square radial velocity profile, while ``p['vr_disp']`` gives
the radial velocity dispersion profile. By definition, ``p['vr_disp']**2`` is the same as
``p['vr_rms']**2 - p['vr']**2``.
**Derivatives**: One may also prepend ``d_`` to the name of a defined array to get the derivative, e.g.
``p['d_temp']`` gives the radial temperature gradient.
**Non-array profiles**: Profiles can be defined that do not directly correspond to the average over an
array in the snapshot. Examples include ``density``, ``mass`` and ``mass_enc``. These are implemented as
functions in the :mod:`pynbody.analysis.profile` module; you can therefore find a list of available
profiles by looking at the functions there. These profiles can be accessed in the same way as array profiles,
e.g. ``p['density']``. For profiles that take an argument, such as ``sb``, this is passed in with
an underscore e.g. ``p['sb_b']`` for b-band surface brightnesses.
**Storing profiles**: Use the :func:`~pynbody.analysis.profile.Profile.write` function to write the current
profiles with all the necessary information to a file. Initialize a profile with the ``load_from_file=True``
keyword to automatically load a previously saved profile. The filename is chosen automatically and corresponds to
a hash generated from the positions of the particles used in the profile. This is to ensure that you are always
looking at the same set of particles, centered in the same way. It also means you *must* use the same centering
method if you want to reuse a saved profile.
.. versionchanged:: 2.0
The method ``create_particle_array`` has been removed. Its behaviour was poorly defined in v1, and not believed
to be widely used.
"""
_profile_registry = {}
def _calculate_x(self, sim):
if self._x_calculator is not None:
return self._x_calculator(sim)
else:
return ((sim['pos'][:, 0:self.ndim] ** 2).sum(axis=1)) ** (1, 2)
[docs]
def __init__(self, sim, load_from_file=False, ndim=2, type='lin', calc_x=None, weight_by='mass', **kwargs):
"""Initialise a profile, determining the binning quantity and bin size.
The constructor generates the bins without actually calculating any profiles. The profiles are calculated
lazily when requested.
Parameters
----------
sim : pynbody.snapshot.SimSnap
The simulation snapshot to generate a profile for
ndim : int, optional:
Specifies whether it's a 2D or 3D profile - in the 2D case, the bins are generated in the xy plane
type : str, optional:
Specifies whether bins should be spaced linearly ('lin', default), logarithmically ('log') or contain
equal numbers of particles ('equaln')
rmin : float, optional:
Minimum value to consider (left-hand-edge of lowest bin). Default is the minimum value of the binning
quantity.
rmax : float, optional:
Maximum value to consider (right-hand-edge of highest bin). Default is the maximum value of the binning
quantity.
nbins : int, optional:
Number of bins to use. Default is 100.
bins : array-like, optional:
Predefined bin edges in units of the binning quantity. If this keyword is set, the values of the keywords
type, nbins, rmin and rmax will be ignored.
calc_x : function, optional:
Function to use to calculate the value for binning. If None it defaults to the radial distance from
origin (in either 2 or 3 dimensions), but you can specify this function to return any value you want for
making profiles along arbitrary axes. Depending on your function, the units of certain profiles (such as
density) might not make sense.
weight_by : str, optional:
Name of the array to use for weighting averages across particles in each bin. Default is 'mass'.
"""
generate_new = True
self._x_calculator = calc_x
self.sim = sim
self.type = type
self.ndim = ndim
self._weight_by = weight_by
self._x = self._calculate_x(sim)
x = self._x
if load_from_file:
filename = self._get_unique_filepath_from_particle_list()
try:
with open(filename, "rb") as f:
data = pickle.load(f)
self._properties = data['properties']
self.max = data['max']
self.min = data['min']
self.nbins = data['nbins']
self._profiles = data['profiles']
self.binind = data['binind']
logger.info("Loaded profile from %s" % filename)
generate_new = False
except FileNotFoundError:
logger.warning(
"Existing profile not found -- generating one from scratch instead")
if generate_new:
self._properties = {}
# The profile object is initialized given some array of values
# and optional keyword parameters
if 'max' in kwargs:
kwargs['rmax'] = kwargs.pop('max')
warnings.warn("Use of max as a keyword argument is deprecated. Use rmax instead.", DeprecationWarning)
if 'min' in kwargs:
kwargs['rmin'] = kwargs.pop('min')
warnings.warn("Use of min as a keyword argument is deprecated. Use rmin instead.", DeprecationWarning)
if 'rmax' in kwargs and kwargs['rmax'] is not None:
if isinstance(kwargs['rmax'], str):
self.max = units.Unit(kwargs['rmax']).ratio(x.units,
**sim.conversion_context())
else:
self.max = kwargs['rmax']
else:
self.max = np.max(x)
if 'bins' in kwargs:
self.nbins = len(kwargs['bins']) - 1
elif 'nbins' in kwargs:
self.nbins = kwargs['nbins']
else:
self.nbins = 100
if 'rmin' in kwargs and kwargs['rmin'] is not None:
if isinstance(kwargs['rmin'], str):
self.min = units.Unit(kwargs['rmin']).ratio(x.units,
**sim.conversion_context())
else:
self.min = kwargs['rmin']
else:
if type == 'log':
self.min = np.min(x[x > 0])
else:
self.min = np.min(x)
if 'bins' in kwargs:
self._properties['bin_edges'] = kwargs['bins']
self.min = kwargs['bins'].min()
self.max = kwargs['bins'].max()
elif type == 'log':
self._properties['bin_edges'] = np.logspace(
np.log10(self.min), np.log10(self.max), num=self.nbins + 1)
elif type == 'lin':
self._properties['bin_edges'] = np.linspace(
self.min, self.max, num=self.nbins + 1)
elif type == 'equaln':
self._properties['bin_edges'] = util.equipartition(
x, self.nbins, self.min, self.max)
else:
raise RuntimeError("Bin type must be one of: lin, log, equaln")
self['bin_edges'] = array.SimArray(self['bin_edges'], x.units)
self['bin_edges'].sim = self.sim
n, bins = np.histogram(self._x, self['bin_edges'])
self._setup_bins()
# set up the empty list of profiles
self._profiles = {'n': n}
def _setup_bins(self):
# middle of the bins for convenience
self._properties['rbins'] = (0.5 * (self['bin_edges'][:-1] + self['bin_edges'][1:])).view(array.SimArray)
self._properties['rbins'].units = self['bin_edges'].units
self._properties['rbins'].sim = self.sim # important to have this relationship e.g. for comoving unit conversions
# Width of the bins
self._properties['dr'] = np.gradient(self['rbins']).view(array.SimArray)
self._properties['dr'].units = self['rbins'].units
self._properties['dr'].sim = self.sim
self.binind = []
if len(self._x) > 0:
self.partbin = np.digitize(self._x, self['bin_edges']) - 1
else:
self.partbin = np.array([])
self._properties['npart_bins'] = np.zeros(self.nbins, dtype=int)
assert self.ndim in [2, 3]
if self.ndim == 2:
self._binsize = np.pi * (self['bin_edges'][1:] ** 2 -
self['bin_edges'][:-1] ** 2)
else:
self._binsize = 4. / 3. * np.pi * (self['bin_edges'][1:] ** 3 -
self['bin_edges'][:-1] ** 3)
# sort the partbin array
from bisect import bisect
sortind = self.partbin.argsort()
sort_pind = self.partbin[sortind]
# create the bin index arrays
prev_index = bisect(sort_pind, -1)
for i in range(self.nbins):
new_index = bisect(sort_pind, i)
self.binind.append(np.sort(sortind[prev_index:new_index]))
self._properties['npart_bins'][i] = len(self.binind[i])
prev_index = new_index
def __len__(self):
"""Returns the number of bins used in this profile object"""
return self.nbins
def _get_profile(self, name):
"""Return the profile of a given kind"""
x = name.split(",")
if name in self._profiles:
return self._profiles[name]
elif x[0] in Profile._profile_registry:
args = x[1:]
self._profiles[name] = Profile._profile_registry[x[0]](self, *args)
try:
self._profiles[name].sim = self.sim
except AttributeError:
pass
return self._profiles[name]
elif name in list(self.sim.keys()) or name in self.sim.all_keys():
self._profiles[name] = self._auto_profile(name)
self._profiles[name].sim = self.sim
return self._profiles[name]
elif name[-5:] == "_disp" and (name[:-5] in list(self.sim.keys()) or name[:-5] in self.sim.all_keys()):
logger.info("Auto-deriving %s" % name)
self._profiles[name] = self._auto_profile(
name[:-5], dispersion=True)
self._profiles[name].sim = self.sim
return self._profiles[name]
elif name[-4:] == "_rms" and (name[:-4] in list(self.sim.keys()) or name[:-4] in self.sim.all_keys()):
logger.info("Auto-deriving %s" % name)
self._profiles[name] = self._auto_profile(name[:-4], rms=True)
self._profiles[name].sim = self.sim
return self._profiles[name]
elif name[-4:] == "_med" and (name[:-4] in list(self.sim.keys()) or name[:-4] in self.sim.all_keys()):
logger.info("Auto-deriving %s" % name)
self._profiles[name] = self._auto_profile(name[:-4], median=True)
self._profiles[name].sim = self.sim
return self._profiles[name]
elif name[0:2] == "d_" and (name[2:] in list(self.keys()) or name[2:] in self.derivable_keys() or name[2:] in self.sim.all_keys()):
# if np.diff(self['dr']).all() < 1e-13 :
logger.info("Auto-deriving %s/dR" % name)
self._profiles[name] = np.gradient(self[name[2:]], self['dr'][0])
self._profiles[name] = self._profiles[name] / self['dr'].units
return self._profiles[name]
# else :
# raise RuntimeError, "Derivatives only possible for profiles of fixed bin width."
else:
raise KeyError(name + " is not a valid profile")
def _auto_profile(self, name, dispersion=False, rms=False, median=False):
result = np.zeros(self.nbins)
# force derivation of array if necessary:
self.sim[name]
for i in range(self.nbins):
subs = self.sim[self.binind[i]]
name_array = subs[name].view(np.ndarray)
mass_array = subs[self._weight_by].view(np.ndarray)
if dispersion:
sq_mean = (name_array ** 2 * mass_array).sum() / \
self['weight_fn'][i]
mean_sq = (
(name_array * mass_array).sum() / self['weight_fn'][i]) ** 2
try:
result[i] = math.sqrt(sq_mean - mean_sq)
except ValueError:
# sq_mean<mean_sq occasionally from numerical roundoff
result[i] = 0
elif rms:
result[i] = np.sqrt(
(name_array ** 2 * mass_array).sum() / self['weight_fn'][i])
elif median:
if len(subs) == 0:
result[i] = np.nan
else:
sorted_name = sorted(name_array)
result[i] = sorted_name[int(np.floor(0.5 * len(subs)))]
else:
result[i] = (name_array * mass_array).sum() / self['weight_fn'][i]
result = result.view(array.SimArray)
result.units = self.sim[name].units
result.sim = self.sim
return result
def __getitem__(self, name):
"""Return the profile of a given kind"""
if name in self._properties:
return self._properties[name]
else:
return self._get_profile(name)
def __setitem__(self, name, item):
"""Set the profile or property by hand"""
if name in self._properties:
self._properties[name] = item
elif name in self._profiles:
self._profiles[name] = item
else:
raise KeyError(name + " is not a valid profile or property")
def __delitem__(self, name):
del self._profiles[name]
def __repr__(self):
return ("<Profile: " +
str(self.families()) + " ; " +
str(self.ndim) + "D ; " +
self.type) + " ; " + str(list(self.keys())) + ">"
[docs]
def keys(self):
"""Returns a listing of available profile types"""
return list(self._profiles.keys())
[docs]
def derivable_keys(self):
"""Returns a list of possible profiles"""
return list(self._profile_registry.keys())
[docs]
def families(self):
"""Returns the family of particles used"""
return self.sim.families()
[docs]
def create_particle_array(self, profile_name, particle_name=None, log_x_interpolation = None,
log_y_interpolation = None, target_simulation=None):
"""Interpolate the profile back onto the particles
For example, calling ``create_particle_array('density')`` will create a new array in the simulation
called `'density'` which is the density of each particle according to the profile.
Parameters
----------
profile_name : str
The name of the profile to interpolate
particle_name : str, optional
The name of the new array to create. If not specified, it will be the same as the profile_name.
log_x_interpolation : bool, optional
If True, interpolate in log space for the x-axis; if False, don't. If None, perform log interpolation
if all bin centres are positive.
log_y_interpolation : bool, optional
If True, interpolate in log space for the y-axis; if False, don't. If None, perform log interpolation
if all profile values are positive.
target_simulation : pynbody.SimSnap, optional
The simulation to create the new array in. If not specified, the array will be created in the
current simulation. Specifying another simulation is helpful e.g. if you want to interpolate the
profile onto a different set of particles.
"""
if particle_name is None:
particle_name = profile_name
if target_simulation is None:
target_simulation = self.sim
particle_x = self._x
else:
particle_x = self._calculate_x(target_simulation)
binned_x = self['rbins']
binned_y = self[profile_name]
# this lets us use a quantile profile with a single quantile return
if len(binned_y.shape) == 2 and binned_y.shape[1] == 1:
binned_y = binned_y[:,0]
if log_x_interpolation is None:
log_x_interpolation = np.all(binned_x > 0)
if log_y_interpolation is None:
log_y_interpolation = np.all(binned_y > 0)
if log_x_interpolation:
particle_x = np.log(particle_x)
binned_x = np.log(binned_x)
if log_y_interpolation:
binned_y = np.log(binned_y)
rep = np.interp(particle_x, binned_x, binned_y)
if log_y_interpolation:
target_simulation[particle_name] = np.exp(rep)
else:
target_simulation[particle_name] = rep
target_simulation[particle_name].units = self[profile_name].units
def _generate_hash_filename_from_particles(self):
"""Create a filename for the saved profile from a hash using the binning data"""
import hashlib
# Changing to the new() method, which will not fail if usedforsecurity is unsupported
# in a given system configuration (issue 581)
h = hashlib.new('md5')
# Reproduce old behaviour, given byte-like data to create the hash.
h.update(self._x)
return h.hexdigest()
def _get_unique_filepath_from_particle_list(self):
try:
folder_path = self.sim.base.filename
except AttributeError:
folder_path = self.sim.filename
unique_hash = self._generate_hash_filename_from_particles()
filename = folder_path + '.profile.' + unique_hash
return filename
[docs]
def write(self):
"""
Writes all the vital information of the profile to a file.
To recover the profile, initialize a profile with the ``load_from_file=True`` keyword to automatically
load a previously saved profile. The filename is chosen automatically and corresponds to a hash generated
from the positions of the particles used in the profile. This is to ensure that you are always looking at
the same set of particles, centered in the same way. It also means you *must* use the same centering
method if you want to reuse a saved profile.
"""
# record all the important data except for the snapshot itself
# use the hash generated from the particle list for the file name
# suffix
filename = self._get_unique_filepath_from_particle_list()
logger.info("Writing profile to %s", filename)
with open(filename, "wb") as f:
pickle.dump(
{
'properties': self._properties,
'max': self.max,
'min': self.min,
'nbins': self.nbins,
'profiles': self._profiles,
'binind': self.binind
},
f,
)
[docs]
@staticmethod
def profile_property(fn):
"""Function decorator to define a new profile property.
For example,
.. code-block:: python
@Profile.profile_property
def x_squared(pro):
return pro['x']**2
would define a new profile property 'x_squared' which is the square of the 'x' profile.
This can then be accessed as ``pro['x_squared']`` for any profile object ``pro``.
"""
Profile._profile_registry[fn.__name__] = fn
return fn
[docs]
@Profile.profile_property
def weight_fn(pro, weight_by=None):
"""
Calculate mass in each bin
"""
if weight_by is None:
weight_by = pro._weight_by
mass = array.SimArray(np.zeros(pro.nbins), pro.sim[weight_by].units)
with pro.sim.immediate_mode:
pmass = pro.sim[weight_by].view(np.ndarray)
for i in range(pro.nbins):
mass[i] = (pmass[pro.binind[i]]).sum()
mass.sim = pro.sim
mass.units = pro.sim[weight_by].units
return mass
[docs]
@Profile.profile_property
def mass(pro):
return weight_fn(pro, 'mass')
[docs]
@Profile.profile_property
def density(pro):
"""
Generate a radial density profile for the current type of profile
"""
return pro['mass'] / pro._binsize
[docs]
@Profile.profile_property
def fourier(pro, delta_t ="0.1 Myr", phi_bins=100):
"""
Generate a profile of fourier coefficients, amplitudes and phases
"""
delta_t = pynbody.units.Unit(delta_t)
f = {'c': np.zeros((7, pro.nbins), dtype=complex),
'c_delta': np.zeros((7, pro.nbins), dtype=complex),
'amp': np.zeros((7, pro.nbins)),
'phi': np.zeros((7, pro.nbins)),
'dphi_dt': np.zeros((7, pro.nbins))}
for i in range(pro.nbins):
if pro._profiles['n'][i] > 100:
phi = np.arctan2(
pro.sim['y'][pro.binind[i]], pro.sim['x'][pro.binind[i]])
mass = pro.sim['mass'][pro.binind[i]]
x1 = pro.sim['x'][pro.binind[i]] + pro.sim['vx'][pro.binind[i]] * delta_t
y1 = pro.sim['y'][pro.binind[i]] + pro.sim['vy'][pro.binind[i]] * delta_t
phi1 = np.arctan2(y1,x1)
hist_range = (-np.pi, np.pi)
hist, binphi = np.histogram(phi, weights=mass, bins=phi_bins, range=(hist_range))
hist1, _ = np.histogram(phi1, weights=mass, bins=phi_bins, range=(hist_range))
binphi = binphi[:-1] + .5*np.diff(binphi)
for m in range(7):
f['c'][m, i] = np.sum(hist * np.exp(-1j * m * binphi))
f['c_delta'][m, i] = np.sum(hist1 * np.exp(-1j * m * binphi))
f['c'][:, pro['mass'] > 0] /= pro['mass'][pro['mass'] > 0]
f['amp'] = np.sqrt(np.imag(f['c']) ** 2 + np.real(f['c']) ** 2)
f['phi'] = np.arctan2(np.imag(f['c']), np.real(f['c']))
dphi = np.arctan2(np.imag(f['c_delta']), np.real(f['c_delta'])) - f['phi']
dphi[dphi>np.pi] = dphi[dphi>np.pi]-2*np.pi
dphi[dphi<-np.pi] = dphi[dphi<-np.pi]+2*np.pi
dphi = array.SimArray(dphi,"1")
f['dphi_dt'] = (dphi / delta_t).in_units(pro.sim['vx'].units / pro.sim['x'].units)
return f
[docs]
@Profile.profile_property
def pattern_frequency(pro):
"""Estimate the pattern speed from the m=2 Fourier mode"""
return pro['fourier']['dphi_dt'][2,:]/2
[docs]
@Profile.profile_property
def mass_enc(pro):
"""
Generate the enclosed mass profile
"""
return pro['mass'].cumsum()
[docs]
@Profile.profile_property
def density_enc(pro):
"""
Generate the mean enclosed density profile
"""
return pro['mass_enc'] / ((4. * math.pi / 3) * pro['rbins'] ** 3)
[docs]
@Profile.profile_property
def dyntime(pro):
"""The dynamical time of the bin, sqrt(R^3/2GM)."""
dyntime = (pro['rbins'] ** 3 / (2 * units.G * pro['mass_enc'])) ** (1, 2)
return dyntime
[docs]
@Profile.profile_property
def g_spherical(pro):
"""The naive gravitational acceleration assuming spherical
symmetry = GM_enc/r^2"""
return (units.G * pro['mass_enc'] / pro['rbins'] ** 2)
[docs]
@Profile.profile_property
def rotation_curve_spherical(pro):
"""
The naive rotation curve assuming spherical symmetry: vc = sqrt(G M_enc/r)
"""
# .in_units('km s**-1')
return ((units.G * pro['mass_enc'] / pro['rbins']) ** (1, 2))
[docs]
@Profile.profile_property
def j_circ(pro):
"""Angular momentum of particles on circular orbits."""
return pro['v_circ_total'] * pro['rbins']
[docs]
@Profile.profile_property
def v_circ(pro, grav_sim=None):
"""Circular velocity, i.e. rotation curve. Calculated by computing the gravity in the midplane"""
from .. import gravity
global config
grav_sim = grav_sim or pro.sim
if str(grav_sim.current_transformation()) != 'faceon':
warnings.warn("Profile v_circ -- this routine assumes the disk is in the x-y plane")
# If this is a cosmological run, go up to the halo level
# if hasattr(grav_sim,'base') and grav_sim.base.properties.has_key("halo_number") :
# while hasattr(grav_sim,'base') and grav_sim.base.properties.has_key("halo_number") :
# grav_sim = grav_sim.base
# elif hasattr(grav_sim,'base') :
# grav_sim = grav_sim.base
start = process_time()
rc = gravity.midplane_rot_curve(
grav_sim, pro['rbins']).in_units(pro.sim['vel'].units)
end = process_time()
logger.info("Rotation curve calculated in %5.3g s" % (end - start))
return rc
[docs]
@Profile.profile_property
def v_circ_total(pro):
"""Circular velocity using all particles, not just those in the profile, to source gravity.
In reality, only particles out to 3 times the maximum profile radius are used, for speed."""
sim = pro.sim.ancestor[pynbody.filt.Sphere(3 * pro['rbins'].max())]
return v_circ(pro, sim)
[docs]
@Profile.profile_property
def E_circ(pro):
"""Calculates the energy of particles on circular orbits in the z=0 plane."""
return 0.5 * (pro['v_circ_total'] ** 2) + pro['pot']
[docs]
@Profile.profile_property
def pot(pro):
"""Calculates the potential in the z=0 plane"""
from .. import gravity
grav_sim = pro.sim
# Go up to the halo level
while hasattr(grav_sim, 'base') and "halo_number" in grav_sim.base.properties:
grav_sim = grav_sim.base
if str(grav_sim.current_transformation()) != 'faceon':
warnings.warn("Profile pot -- this routine assumes the disk is in the x-y plane")
start = process_time()
pot = gravity.midplane_potential(
grav_sim, pro['rbins']).in_units(pro.sim['vel'].units ** 2)
end = process_time()
logger.info("Potential calculated in %5.3g s" % (end - start))
return pot
[docs]
@Profile.profile_property
def omega(pro):
"""Circular frequency Omega = v_circ/radius (see Binney & Tremaine Sect. 3.2) in the z=0 plane"""
prof = pro['v_circ'] / pro['rbins']
prof.set_units_like('km s**-1 kpc**-1')
return prof
[docs]
@Profile.profile_property
def kappa(pro):
"""Radial frequency kappa = sqrt(R dOmega^2/dR + 4 Omega^2) (see Binney & Tremaine Sect. 3.2) in the z=0 plane"""
dOmega2dR = np.gradient(pro['omega'] ** 2) / np.gradient(pro['rbins'])
return np.sqrt(pro['rbins'] * dOmega2dR + 4 * pro['omega'] ** 2)
[docs]
@Profile.profile_property
def beta(pro):
"""3D Anisotropy parameter as defined in Binney and Tremaine"""
assert pro.ndim == 3
return 1.5 - (pro['vx_disp'] ** 2 + pro['vy_disp'] ** 2 + pro['vz_disp'] ** 2) / pro['vr_disp'] ** 2 / 2.
[docs]
@Profile.profile_property
def magnitudes(pro, band='v'):
"""Calculate magnitudes in each bin
When calling this from a profile object, the band can be specified after an underscore, e.g.
``p['magnitudes_b']`` for b-band magnitudes.
For important information about the calculation of magnitudes and surface brightnesses, see
the module documentation for :mod:`pynbody.analysis.luminosity`.
"""
from . import luminosity
magnitudes = np.zeros(pro.nbins)
for i in range(pro.nbins):
magnitudes[i] = luminosity.halo_mag(
pro.sim[pro.binind[i]], band=band)
magnitudes = array.SimArray(magnitudes, units.Unit('1'))
magnitudes.sim = pro.sim
return magnitudes
[docs]
@Profile.profile_property
def sb(pro, band='v'):
"""Calculate surface brightness in each bin
When calling this from a profile object, the band can be specified after an underscore, e.g.
``p['sb_b']`` for b-band surface brightnesses.
For important information about the calculation of magnitudes and surface brightnesses, see
the module documentation for :mod:`pynbody.analysis.luminosity`.
"""
# At 10 pc (distance for absolute magnitudes), 1 arcsec is 10 AU=1/2.06e4 pc
# In [5]: (np.tan(np.pi/180/3600)*10.0)**2
# Out[5]: 2.3504430539466191e-09
# 1 square arcsecond is thus 2.35e-9 pc^2
sqarcsec_in_bin = pro._binsize.in_units('pc^2') / 2.3504430539466191e-09
bin_luminosity = 10.0 ** (-0.4 * pro['magnitudes,' + band])
#import pdb; pdb.set_trace()
surfb = -2.5 * np.log10(bin_luminosity / sqarcsec_in_bin)
surfb = array.SimArray(surfb, units.Unit('1'))
surfb.sim = pro.sim
return surfb
[docs]
@Profile.profile_property
def Q(pro):
"""Toomre Q parameter"""
return (pro['vr_disp'] * pro['kappa'] / (3.36 * pro['density'] * units.G)).in_units("")
[docs]
@Profile.profile_property
def X(pro):
"""X parameter defined as kappa^2*R/(2*pi*G*sigma*m), using the rotation curve from the z=0 plane
See Binney & Tremaine 2008, eq. 6.77"""
lambda_crit = 4. * np.pi ** 2 * units.G * \
pro['density'] / (pro['kappa'] ** 2)
kcrit = 2. * np.pi / lambda_crit
return (kcrit * pro['rbins'] / 2).in_units("")
[docs]
@Profile.profile_property
def jtot(pro):
"""Magnitude of the total angular momentum
"""
jtot = np.zeros(pro.nbins)
for i in range(pro.nbins):
subs = pro.sim[pro.binind[i]]
jx = (subs['j'][:, 0] * subs['mass']).sum() / pro['mass'][i]
jy = (subs['j'][:, 1] * subs['mass']).sum() / pro['mass'][i]
jz = (subs['j'][:, 2] * subs['mass']).sum() / pro['mass'][i]
jtot[i] = np.sqrt(jx ** 2 + jy ** 2 + jz ** 2)
return jtot
[docs]
@Profile.profile_property
def j_theta(pro):
"""Angle that the angular momentum vector of the bin makes with respect to the xy-plane."""
return np.arccos(pro['jz'] / pro['jtot'])
[docs]
@Profile.profile_property
def j_phi(pro):
"""Angle that the angular momentum vector of the bin makes with the x-axis in the xy plane."""
j_phi = np.zeros(pro.nbins)
for i in range(pro.nbins):
subs = pro.sim[pro.binind[i]]
jx = (subs['j'][:, 0] * subs['mass']).sum() / pro['mass'][i]
jy = (subs['j'][:, 1] * subs['mass']).sum() / pro['mass'][i]
j_phi[i] = np.arctan2(jy, jx)
return j_phi
[docs]
class InclinedProfile(Profile):
"""
A profile object to be used with a snapshot inclined by some known angle to the xy plane.
In addition to the SimSnap object, it also requires the angle to
initialize.
**Example:**
>>> s = pynbody.load('sim')
>>> pynbody.analysis.angmom.faceon(s)
>>> s.rotate_x(60)
>>> p = pynbody.profile.InclinedProfile(s, 60)
"""
def _calculate_x(self, sim):
# calculate an ellipsoidal radius
return (sim['x'] ** 2 + (sim['y'] / np.cos(np.radians(self.angle))) ** 2) ** (1, 2)
[docs]
def __init__(self, sim, angle, load_from_file=False, ndim=2, type='lin', **kwargs):
self.angle = angle
Profile.__init__(
self, sim, load_from_file=load_from_file, ndim=ndim, type=type, **kwargs)
# define the minor axis
self._properties['rbins_min'] = np.cos(
np.radians(self.angle)) * self['rbins']
[docs]
class VerticalProfile(Profile):
"""A profile class that uses the absolute value of the z coordinate for binning instead of a radial coordinate.
"""
def _calculate_x(self, sim):
return array.SimArray(np.abs(sim['z']), sim['z'].units)
[docs]
def __init__(self, sim, rmin, rmax, zmax, load_from_file=False, ndim=3, type='lin', **kwargs):
"""Creates a profile object that uses the absolute value of the z-coordinate for binning.
Parameters
----------
sim : pynbody.snapshot.simsnap.SimSnap
The snapshot to make a profile from.
rmin : str, float or pynbody.units.Unit
Minimum radius for particle selection.
rmax : str, float or pynbody.units.Unit
Maximum radius for particle selection.
zmax : str, float or pynbody.units.Unit
Maximum height to consider (the upper edge of the binning range)
ndim : int, optional
If ndim=2, an edge-on projected profile is produced, i.e. density is in units of mass/length^2.
If ndim=3 (default) a volume profile is made, i.e. density is in units of mass/length^3.
type : str, optional
The type of binning to use. Can be 'lin' (default), 'log', or 'equaln'.
"""
if isinstance(rmin, str):
rmin = units.Unit(rmin)
if isinstance(rmax, str):
rmax = units.Unit(rmax)
if isinstance(zmax, str):
zmax = units.Unit(zmax)
self.rmin = rmin
self.rmax = rmax
self.zmax = zmax
# create a snapshot that only includes the section of disk we're
# interested in
assert ndim in [2, 3]
if ndim == 3:
sub_sim = sim[
pynbody.filt.Disc(rmax, zmax) & ~pynbody.filt.Disc(rmin, zmax)]
else:
sub_sim = sim[(pynbody.filt.BandPass('x', rmin, rmax) |
pynbody.filt.BandPass('x', -rmax, -rmin)) &
pynbody.filt.BandPass('z', -zmax, zmax)]
Profile.__init__(
self, sub_sim, load_from_file=load_from_file, ndim=ndim, type=type, **kwargs)
def _setup_bins(self):
Profile._setup_bins(self)
dr = self.rmax - self.rmin
if self.ndim == 2:
self._binsize = (
self['bin_edges'][1:] - self['bin_edges'][:-1]) * dr
else:
area = array.SimArray(
np.pi * (self.rmax ** 2 - self.rmin ** 2), "kpc^2")
self._binsize = (
self['bin_edges'][1:] - self['bin_edges'][:-1]) * area
[docs]
class QuantileProfile(Profile):
"""A profile object that returns requested quantiles instead of means in each bin.
"""
[docs]
def __init__(self, sim, q=(0.16, 0.50, 0.84), weights=None, load_from_file = False, ndim = 3, type = 'lin', **kwargs):
"""Creates a profile object that returns the requested quantiles for a given array in a given bin.
Parameters
----------
sim : pynbody.snapshot.simsnap.SimSnap
The snapshot to make a profile from.
q : list of floats, optional
The quantiles that will be returned. Default is median with 1-sigma on either side.
q can be of arbitrary length allowing the user to select any quantiles they desire.
weights : pynbody.array.SimArray, optional
What should be used to weight the quantile. A likely possibility is to use particle mass: ``sim['mass']``.
The default is to weight by particle number, weights=None.
**kwargs :
Additional keyword arguments are passed onto the underlying :class:`Profile` constructor.
"""
# create a snapshot that only includes the section of disk we're
# interested in
self.quantiles = q
self.qweights = weights
Profile.__init__(
self, sim, load_from_file=load_from_file, ndim=ndim, type=type, **kwargs)
def _get_profile(self, name):
"""Return the profile of a given kind"""
x = name.split(",")
if name in self._profiles:
return self._profiles[name]
elif name in list(self.sim.keys()) or name in self.sim.all_keys():
self._profiles[name] = self._auto_profile(name)
self._profiles[name].sim = self.sim
return self._profiles[name]
else:
raise KeyError(name + " is not a valid QuantileProfile")
def _auto_profile(self, name, dispersion=False, rms=False, median=False):
result = np.zeros((self.nbins, len(self.quantiles)))
with self.sim.immediate_mode:
source_array = self.sim[name].view(np.ndarray)
for i in range(self.nbins):
array_this_bin = source_array[self.binind[i]]
if self.qweights is None:
array_this_bin_sorted = np.sort(array_this_bin)
quantiles_this_bin = np.linspace(0, 1, len(array_this_bin))
else:
sorter = np.argsort(array_this_bin)
array_this_bin_sorted = array_this_bin[sorter]
quantiles_this_bin = np.cumsum(self.qweights[self.binind[i]][sorter])
quantiles_this_bin -= quantiles_this_bin[0]
quantiles_this_bin /= quantiles_this_bin[-1]
result[i] = np.interp(self.quantiles, quantiles_this_bin, array_this_bin_sorted)
result = result.view(array.SimArray)
result.units = self.sim[name].units
result.sim = self.sim
return result